
GLIDE: A Grid-based Light-weight
Infrastructure for Data-intensive Environments

Chris A. Mattmann1,2, Sam Malek2, Nels Beckman2,
Marija Mikic-Rakic2, Nenad Medvidovic2, Daniel J. Crichton1

1Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 171-264
Pasadena, CA 91109, USA

{chris.mattmann,dan.crichton}@jpl.nasa.gov
2University of Southern California

Los Angeles, CA 90089, USA,
{mattmann,malek,nbeckman,marija,neno}@usc.edu

Abstract. The promise of the grid is that it will enable public access and shar-
ing of immense amounts of computational and data resources among dynamic
coalitions of individuals and institutions. However, the current grid solutions
make several limiting assumptions that curtail their widespread adoption in
the emerging decentralized, resource constrained, embedded, autonomic, and
mobile (DREAM) environments: they are designed primarily for highly com-
plex scientific problems, and therefore require powerful hardware and reliable
network connectivity; additionally, they provide no application design sup-
port to grid users (e.g., scientists). To address these limitations, we present
GLIDE, a prototype light-weight, data-intensive middleware infrastructure
that enables access to the robust data and computational power of the grid on
DREAM platforms. We illustrate GLIDE on an example file sharing applica-
tion. We discuss our early experience with GLIDE and present a set of open
research questions.

1 Introduction
One of the most exciting and promising technologies in modern computing is the grid
[4,6]. Grid computing connects dynamic collections of individuals, institutions, and re-
sources to create virtual organizations, which support sharing, discovery, transforma-
tion, and distribution of data and computational resources. Distributed workflow, mas-
sive parallel computation, and knowledge discovery are only some of the applications
of the grid. Grid applications involve large numbers of distributed devices executing
large numbers of computational and data components. As such, they require techniques
and tools for supporting their design, implementation, and dynamic evolution.

Current grid technologies provide extensive support for describing, modelling, dis-
covering, and retrieving data and computational resources. Unfortunately, they are pre-
dominantly implemented using middleware infrastructures that leverage both heavy-
weight and computationally intensive protocols and objects [3]. As such, current grid
software systems are not readily applicable to the domain of decentralized, resource
constrained, embedded, autonomic, and mobile (DREAM) environments. Existing grid
technologies also lack native support for systematic application design, implementa-
tion, and evolution. Finally, the development, deployment, and runtime adaptation sup-
port for the grid is ad-hoc: shell scripts abound, makefiles are the common construction
and deployment tool, and adaptation is usually handled by restarting the entire system.

Given the central role that software architectures have played in engineering large-
scale distributed systems [12], we hypothesize that their importance will only grow in
the even more complex (grid-enabled) DREAM environments. This is corroborated by
the preliminary results from several recent studies of software architectural issues in
embedded, mobile, and ubiquitous systems [10,14,19]. In order for architectural models
to be truly useful in any development setting, they must be accompanied by support for
their implementation [8]. This is particularly important for the DREAM environments:
these systems will be highly distributed, decentralized, mobile, and long-lived, increas-
ing the risk of architectural drift [12] unless there is a clear relationship between the ar-
chitecture and its implementation. To address these issues, several light-weight soft-
ware architecture-based solutions [10,14] supporting the design, implementation, and
evolution of software systems in DREAM environments have recently emerged. How-
ever, these solutions are still not directly supporting the grid: they have not focused on,
and uniformly lack facilities for, resource and data description, search, and retrieval.

A recent focus of our work has been on addressing the limitations of the grid by
bridging the two approaches described above. Specifically, we have drawn upon our
previous experience in developing the OODT data grid middleware [2,8] along with our
experience in developing the Prism-MW middleware for resource constrained devices
[9,10], to arrive at GLIDE, a grid-based, lightweight infrastructure for data-intensive
environments. GLIDE was built with a focus on addressing both the resource limita-
tions and lack of systematic application development support of the current grid tech-
nologies. GLIDE strives to marry the benefits of Prism-MW (architecture-based devel-
opment, efficiency, and scalability) with those of OODT (resource description, discov-
ery, and retrieval). We have performed a preliminary evaluation of GLIDE using a
series of benchmarks, and have successfully tested it by creating a mobile media sharing
application which allows users to share, describe and locate mp3 files on a set of dis-
tributed PDAs. While this work is still in its early stages, our initial results have been
promising and have pointed to several avenues of future work.

The rest of this paper is organized as follows. Section 2 describes the existing grid
middleware infrastructures and presents an overview of Prism-MW. Section 3 describes
the design, implementation, and evaluation of GLIDE and is illustrated using an exam-
ple MP3 sharing application. The paper concludes with an overview of future work.

2 Background and Related Work
GLIDE has been inspired by a set of related projects along with our own existing work
in three areas: computational and data grids, light-weight middleware and protocols,
and implementation support for software architectures. In this section, we first briefly
overview existing grid solutions, and their most obvious limitations that motivated
GLIDE. We then describe OODT, the grid technology used by NASA and the National
Cancer Institute, along with other representative approaches to large-scale data sharing.
Finally, we summarize Prism-MW, a light-weight middleware platform that explicitly
focuses on implementation-level support for software architectures in DREAM envi-
ronments; we also briefly overview a cross-section of representative light-weight mid-
dleware platforms.

2.1 Computational Grid Technologies
Globus [4,6] is an open-source middleware framework for constructing and deploying
grid-based software systems, which has become the de facto standard grid toolkit. Glo-
bus realizes the basic goal of the grid: the establishment of virtual organizations sharing
computational, data, metadata, and security resources. However, Globus lacks several
development features that would ease its adoption and use across a more widespread
family of software systems and environments. These features include (1) architecture-
based development, (2) deployment and evolution support (currently makefiles and
shell-scripts are the standard build tools) and (3) lightweight implementation substrates.

In addition to Globus, several other grid technologies have emerged recently. Al-
chemi [1] is based on the Microsoft .NET platform and allows developers to aggregate
the processing power of many computers into virtual computers. Alchemi is designed
for deployment on personal computers: computation cycles are only shared when the
computer is idle. JXTA [7] is a framework for developing distributed applications based
on a peer-to-peer topology. Its layered architecture provides abstractions of low-level
protocols along with services such as host discovery, data sharing, and security.

2.2 Data Grid Technologies
GLIDE is directly motivated by our own work in the area of data-grids, specifically on
the Object Oriented Data Technology (OODT) system [2]. We have adopted an archi-
tecture-centric approach in OODT [8], in pursuit of supporting distribution, processing,
query, discovery, and integration of heterogeneous data located in distributed data
sources. Additionally, OODT provides methods for resource description and discovery
based on the ISO-11179 data model standard [17], along with the Dublin Core standard
for the specification and standardization of data elements [18].

There are several other technologies for large-scale data sharing. Grid Data Farm
[15] project is a parallel file system created for researchers in the field of high energy
acceleration. Its goal is to federate extremely large numbers of file systems on local PCs
and, at the same time, to manage the file replication across those systems, thus creating
a single global file system. Similar to OODT, the SDSC Storage Resource Broker [13]
is a middleware that provides access to large numbers of heterogeneous data sources.
Its query services attempt to retrieve files based on logical information rather than file
name or location, in much the same way that OODT maintains profile data.

2.3 Prism-MW
Prism-MW [10] is a middleware platform that provides explicit implementation-level
support for software architectures. The key software architectural constructs are com-
ponents (units of computation within a software system), connectors (interaction facil-
ities between components such as local or remote method calls, shared variables, mes-
sage multicast, and so on), and configurations (rules governing the arrangements of
components and connectors) [12]. The top-left diagram in Figure 1 shows the class de-
sign view of Prism-MW’s core. Brick is an abstract class that encapsulates common fea-
tures of its subclasses (Architecture, Component, and Connector). The Architecture
class records the configuration of its components and connectors, and provides facilities
for their addition, removal, and reconnection, possibly at system runtime. A distributed

application is implemented as a set of interacting Architecture objects, communicating
via DistributionConnectors across process or machine boundaries. Components in an
architecture communicate by exchanging Events, which are routed by Connectors. Fi-
nally, Prism-MW associates the IScaffold interface with every Brick. Scaffolds are used
to schedule and dispatch events using a pool of threads in a decoupled manner. IScaffold
also directly aids architectural self-awareness by allowing the runtime probing of a
Brick’s behavior.

Prism-MW enables several desired features of GLIDE. First, it provides the needed
low-level middleware services for use in DREAM environments, including decentrali-
zation, concurrency, distribution, programming language abstraction, and data marshal-
ling and unmarshalling. Second, unlike the support in current grid-based middleware
systems (including OODT), Prism-MW enables the definition and (re)use of architec-
tural styles, thereby providing design guidelines and facilitating reuse of designs across
families of DREAM systems. Third, Prism-DE [9], an architecture-based (re-)deploy-
ment environment that utilizes Prism-MW, can be extended to aid GLIDE users in con-
structing, deploying, and evolving grid-based DREAM systems.

A number of additional middleware technologies exist that support either architec-
tural design or mobile and resource constrained computation, but rarely both [10]. An
example of the former is Enterprise Java Beans, a popular commercial technology for
creating distributed Java applications. An example of the latter is XMIDDLE [16], an
XML-based data sharing framework targeted at mobile environments.

3 Arriving at GLIDE
GLIDE is a hybrid grid middleware which combines the salient properties of Prism-
MW and core services of the grid, with the goal of extending the reach of the grid be-
yond super-computing and desktop-or-better platforms to the realm of DREAM envi-
ronments. To this end, the myriad of heterogeneous data (music files, images, science
data, accounting documents, and so on) and computational (web services, scientific
computing testbeds, and so on) resources made available by heavy-weight grids can
also be made available on their mobile counterparts. Thus, mobile grids enabled by
GLIDE have the potential to be both data-intensive, requiring the system to provide rich
metadata describing the abundant resources (and subsequently deliver and retrieve rep-
resentatively large amounts of them), as well as computationally-intensive, focused on
discovering and utilizing data, systems, authorization, and access privileges to enable
complex, distributed processing and workflow.

Existing grid solutions such as Globus and OODT take a completely agnostic ap-
proach to the amount of hardware, memory, and network resources available for de-
ploying, executing, and evolving a grid-based software system. These technologies
consider the system’s architectural design to be outside their scope. In addition, they
also fail to provide sufficient development-level support for building, deploying, and
evolving software applications. A solution that overcomes these limitations is needed
to realize the widely stated vision of “data and computation everywhere”. By imple-
menting the core grid components of OODT using Prism-MW, we believe to have cre-
ated an effective prototype platform for investigating and addressing these limitations.

3.1 GLIDE’s Design
We specialized
Prism-MW to im-
plement the core
components of
GLIDE shown in
Figure 1. Our first
objective was to
retain the key
properties and
services of Prism-
MW and provide
basic grid services
(such as resource
discovery and de-
scription, search
and retrieval)
across dynamic
and mobile virtual
organizations.
Additionally, we
desired GLIDE to
support architecture-based design, implementation, deployment, and evolution of data-
intensive grid applications in DREAM environments. Finally, we desired that GLIDE
at least partially interoperate with a heavy-weight grid counterpart: because of our prior
experience with the OODT middleware, it seemed the most appropriate choice; indeed,
OODT directly influenced our design of the key grid services provided by GLIDE. Be-
low we describe GLIDE’s architecture in light of these objectives.

Inspired by OODT’s architecture, GLIDE’s Data Components include the Re-
source Profile, a data structure which describes the location and classification of a re-
source available within a grid-based software system. Resources include data granules
(such as a File), data-producing software systems (including the below described profile
servers, product servers, query servers, and so on), computation-providing software
systems, and resource profiles themselves. Resource profiles may contain additional re-
source-describing metadata [2]. The Query Object is a data structure which contains a
query expression. A query expression assigns values to a predefined set of data ele-
ments that describe resources of interest to the user and a collection of obtained results.

Again, inspired by OODT’s architecture, GLIDE’s Processing Components include
Product Servers, which are responsible for abstracting heterogeneous software interfac-
es to data sources (such as an SQL interface to a database, a File System interface to a
set of images, an HTTP interface to a set of web pages, and so on) into a single interface
that supports querying for retrieval of data and computational resources. Users query
product servers using the query object data structure. Product Clients connect and send
queries (via a query object) to product servers. A query results in either data retrieval or
use of a remote computational resource. Profile Servers generate and deliver metadata

Figure 1. Architecture diagram of GLIDE showing its Prism-MW
and OODT foundation.

GLIDE

PRISM-MW Core

Extensible
Component

OODT Connectors

OODT Processing Components

OODT Data Components

IConnector

Scaffold
Abstract
Scaffold

Brick
Architecture

Extensible
Architecture

Component

Connector

Event

Port

IComponent
IPort

java.io.Serializable

IArchitecture
#mutualPort

Profile Server
Profile Client

Query Client

Product Client

Messaging Layer

Resource Profile

Query Object

0..*

0..*

Product ServerQuery Server

ProfileHandler

IProfileHandler
0..*

IProfileServer

IQueryHandler

QueryHandler

0..*

Querier Thread

0..*

IProductServerIQueryServer

Glide Utilities

XMLQueryObjReader

XMLProfileReader

Extensible
Connector

Extensible
Port

[2] in the form of resource profile data structures, which are used for making informed
decisions regarding the type and location of resources that satisfy given criteria. Profile
Clients connect and send queries to profile servers. After sending a query, a profile cli-
ent waits for the profile server to send back any resource profiles that satisfy the query.
Query Servers accept query objects, and then use profile servers to determine the avail-
able data or computational resources that satisfy the user’s query. Once all the resources
have been collected, and processing has occurred, the data and processing results are
returned (in the form of the result list of a query object) to the originating user. Query
Clients connect to query servers, issue queries, and retrieve query objects with populat-
ed data results. GLIDE contains one software connector. The Messaging Layer connec-
tor is a data bus which marshals resource profiles and query objects between GLIDE
client and server components.

Each GLIDE processing component was implemented by subclassing Prism-MW’s
ExtensibleComponent class, using the asynchronous mode of operation. Asynchronous
interaction directly resulted in lower coupling among GLIDE’s processing components.
For example the dependency relationships between GLIDE’s Client and Server
processing components, which existed in OODT, are removed. GLIDE’s components
use Prism-MW’s Events to exchange messages. GLIDE data components are sent be-
tween processing components by encapsulating them as parameters in Prism-MW
Events. Leveraging Prism-MW’s Events to send and receive different types of data en-
ables homogenous interaction among the processing components.

We found OODT’s connectors not
to be suitable for DREAM environ-
ments because of their heavy-weight
(they are implemented using middle-
ware such as RMI and CORBA). Fur-
thermore, they only support synchro-
nous interaction, which is difficult to ef-
fect in highly decentralized and mobile
systems characterized by unreliable net-
work links. To this end, we have lever-
aged Prism-MW’s asynchronous con-
nectors to implement the messaging lay-
er class in GLIDE. GLIDE’s connector
leverages Prism-MW’s port objects that
allow easy addition or removal of TCP/
IP connections, thus allowing the sys-
tem’s topology to be adapted at runtime.
GLIDE’s connector also implements
event filtering such that only the requesting client receives responses from the server.

The high degree of decoupling among GLIDE messaging layer components directly
aids easy dynamic adaptation, the lack of which is a key limitation in current grid sys-
tems. Ability to easily adapt a system’s software architecture is an important property
missing in OODT that can be leveraged to improve the system’s functionality, scalabil-
ity, availability, latency, and so on. For example, our recent studies [10] have shown

Figure 2. Mobile Media Sharing Application

Mobile Media Application

Laptop

Legend:

Laptop

Data Flow

PDA

MP3s Mobile Media using
GLIDE

that the availability and latency of software systems in DREAM environments can be
improved significantly via dynamic adaptation.

Finally, to support interoperability of GLIDE with OODT, we provide two addi-
tional utility classes: XMLProfileReader and XMLQueryObjReader parse an XML rep-
resentation of a resource profile and query object data structure, respectively. Due to
space limitations, we cannot provide a detailed example of the XML Profile structure
here, but its full treatment can be found in [2]. Each string is parsed into a GLIDE data
object. Similarly, resource profiles and query objects can be serialized into XML. Thus,
the level of interoperability with OODT is at the level of resource description and re-
trieval, and currently resource profiles and data can be exchanged between GLIDE and
OODT. As part of our current work, we are investigating the Web Services Resource
Framework (WS-RF) as a means of enabling interoperability between GLIDE and Glo-
bus, which looks to use WS-RF in its latest release.

3.2 Sample Application Using GLIDE
In order to evaluate the feasibil-
ity of GLIDE, we designed and
implemented a Mobile Media
Sharing application (MMS),
shown in Figure 2. MMS allows
a user to query, search, locate,
and retrieve MP3 resources
across a set of mobile, distribut-
ed, resource-constrained devic-
es. Users query mobile media
servers for MP3 files by specify-
ing values for genre and quality
of the MP3 (described below),
and if found, the MP3s are
streamed asychronously to the
requesting mobile media client.

Figure 3 shows the overall
distributed architecture of the
MMS application. A mobile de-
vice can act as a server, a client,
or both. MobileMediaServer
and MobileMediaClient corre-
spond to the parts of the applica-
tion that are running on the server and the client devices.

MobileMediaClient contains a single component called MediaQueryGUI, which
provides a GUI for creating MP3 queries. MP3 queries use two query parameters,
MP3.Genre (e.g., rock) and MP3.Quality (e.g., 192 kb/s, 128 kb/s). MediaQueryGUI is
attached to a QueryConn, which is an instance of GLIDE’s messaging layer connector
that forwards the queries to remote servers and responses back to the clients.

Figure 3. Mobile Media Application Architecture

Mobile Media Architecture using GLIDE

GLIDE

GLIDE

GLIDEGLIDE

GLIDE

Profile ServerProduct Server

Query Server
Messaging Layer

Resource Profile
Query Object

Media
Product
Server

Media
Profile
Server

ServerConn

Media
Query
Server

QueryConn

MobileMediaClient

Media
Query
GUI

QueryConn

TC
P/IP

Messaging Layer

GLIDE

MobileMediaServer

Query Client

MobileMediaServer is composed of three component types: MediaQueryServer,
MediaProductServer, and MediaProfileServer. MediaQueryServer parses the query re-
ceived from the client, retrieves the resource profiles that match the query from Medi-
aProfileServer, retrieves the mp3 file(s) in which the user was interested from the Me-
diaProductServer, and sends the MP3 file(s) back to the client.

The MMS application helps to illustrate different aspects of GLIDE: it has been de-
signed and implemented by leveraging most of GLIDE’s processing and data compo-
nents and its messaging layer connector, and has been deployed on DREAM devices.
In the next section we evaluate GLIDE using MMS as an example.

3.3 Evaluation
In this section we evaluate GLIDE along the two dimensions outlined in the Introduc-
tion: (1) its support for architecture-based development and deployment, and (2) its
suitability for DREAM environments.

3.3.1 Architecture-Based Development and Deployment Support
GLIDE inherits architec-
ture-based development and
deployment capabilities, in-
cluding style awareness,
from Prism-MW and de-
ployment support, from
PRISM-DE. Unlike most
existing grid middleware so-
lutions (e.g. OODT), which
provide support for either
peer-to-peer or client-server
styles, GLIDE does not im-
pose any particular (possi-
bly ill-suited) architectural
style on the developers of a
grid-based application. As a proof of concept, we have implemented several variations
of the MMS application in different architectural styles including client-server, layered
client-server, peer-to-peer, and C2 [20]. The variations of MMS leveraged existing sup-
port for these styles and were created with minimal effort. For example, changing MMS
from client-server to peer-to-peer required addition of three components and a connec-
tor on the server side, and one component and one connector on the client side. Figure
4 shows the peer-to-peer variant of MMS.

3.3.2 DREAM Support
Resource scarcity poses the greatest challenge to any grid solution for DREAM envi-
ronments. We have leveraged Prism-MW’s efficient implementation of architectural
constructs [10] along with the following techniques to improve GLIDE’s performance
and minimize the effect of the computing environment’s heterogeneity: (1) MinML
[11], a lightweight XML parser, to parse the resource profiles and query object data

Figure 4. Peer-to-peer variation of the Mobile Media
application.

Media
Product
Server

Media
Profile
Server

ServerConn

Media
Query
Server

QueryConn

Media
Query

GUI

TCP/IP

Mobile Media Peer-to-Peer

Media
Product
Server

Media
Profile
Server

ServerConn

Media
Query
Server

QueryConn

Media
Query

GUI

Mobile Media Peer-to-Peer

structures; (2) W3C’s Jigsaw Web Server Base64 Encoding Library [5] to compress (at
the product server end) and uncompress (at the product client end) the exchanged data;
(3) Filtering inside the Messaging Layer to ensure event delivery only to the interested
parties, thus minimizing propagation of events with large data loads (e.g., MP3 files).
Specifically, GLIDE tags outgoing request events from a client with a unique ID, which
is later used to route the replies appropriately; and (4) Incremental data exchange via
numbered data segments for cases when the reliability of connectivity and network
bandwidth prevent atomic exchange of large amounts of data.

As an illustration of GLIDE’s efficiency, Table 1 shows the memory footprint of
MobileMediaServer’s and MobileMediaClient’s implementation in GLIDE. The total
size of the MobileMediaServer was 5.7KB and MobileMediaClient was 4.1KB, which
is two orders of magnitude smaller than their implementation in OODT (707KB and
280KB, respectively). The memory overhead introduced by GLIDE on the client and
server devices was under 4KB.

4 Conclusions and Future Work
This paper has presented the motivation for and prototype implementation of a grid plat-
form for decentralized, resource constrained, embedded, autonomic, and mobile

Table 1: Memory footprint of MobileMediaServer and MobileMediaClient in GLIDE
MobileMediaServer Java Packages # Live Objects Total Size (bytes)

Java java.lang 36 2016

glide.product 1 24

glide.profile 1 24

GLIDE’s Implementation of
OODT components

glide.query 1 32

glide.queryparser 1 160

glide.structs 8 232

Application
mobilemedia.product.handlers 1 32

mobilemedia.profile.handlers 1 8

glide.prism.core 26 1744

glide.prism.extensions.port 1 40

Prism-MW glide.prism.extensions.port.distribution 4 216

glide.prism.handler 2 32

glide.prism.util 18 1200

Total size 5760

MobileMediaClient
Java java.lang 28 1568

GLIDE’s implementation of
OODT components

glide.structs 7 208

Application mobilemedia 2 384

glide.prism.core 18 1304

glide.prism.extensions.port 1 40

Prism-MW glide.prism.extensions.port.distribution 3 136

glide.prism.handler 1 16

glide.prism.util 7 480

Total size 4136

(DREAM) environments. Although the results of our work to date are promising, a
number of pertinent issues remain unexplored. Future work will focus on (1) extending
GLIDE to provide a set of meta-level services, including monitoring of data and meta-
data; and (2) addressing the resource replication issue in grid applications. We believe
that GLIDE will afford us an effective platform for investigating this rich research area.

5 Acknowledgements
This material is based upon work supported by the National Science Foundation under
Grant Numbers CCR-9985441 and ITR-0312780. Effort also supported by the Jet Pro-
pulsion Laboratory, managed by the California Institute of Technology.

6 References
[1] Alchemi .NET Grid Computing Framework. http://www.alchemi.net/doc/0_6_1/index.html
[2] D. J. Crichton, J. S. Hughes, and S. Kelly. A Science Data System Architecture for Information Re-

trieval. in Clustering and Information Retrieval. W. Wu, H. Xiong, and S. Shekhar, Eds.: Kluwer
Academic Publishers, 2003, pp. 261-298.

[3] N. Davies, A. Friday and O. Storz. Exploring the Grid’s potential for ubiquitous computing. IEEE
Pervasive Computing, Vol 3. No. 2, April-June, 2004, pp.74-75.

[4] I. Foster et al. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Sys-
tems Integration. Globus Research, Work-in-Progress 2002.

[5] Jigsaw Overview. http://www.w3.org/Jigsaw/.
[6] C. Kesselman, I. Foster, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organ-

izations, International Journal of Supercomputing Applications, pp. 1-25, 2001.
[7] N. Maibaum, T. Mundt. JXTA: A Technology Facilitating Mobile Peer-to-Peer Networks. Mobi-

Wac 2002. Fort Worth, TX, October 2002.
[8] C. Mattmann et al. Software Architecture for Large-scale, Distributed, Data-Intensive Systems. 4th

Working IEEE/IFIP Conference on Software Architecture, Oslo, Norway, 2004.
[9] M. Mikic-Rakic and N. Medvidovic. Architecture-Level Support for Software Component Deploy-

ment in Resource Constrained Environments, 1st International IFIP/ACM Working Conference on
Component Deployment, Berlin, Germany, 2002.

[10] M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural Middleware for Programming-in-the-
Small-and-Many. ACM/IFIP/USENIX Middleware Conference, Rio De Janeiro, Brazil, 2003.

[11] MinML A Minimal XML parser. http://www.wilson.co.uk/xml/minml.htm.
[12] D. E. Perry and A. L. Wolf. Foundations for the Study of Software Architecture, ACM SIGSOFT

Software Engineering Notes (SEN), vol. 17, 1992.
[13] A. Rajasekar, M. Wan, R. Moore. MySRB and SRB - Components of a Data Grid. High Perform-

ance Distributed Computing (HPDC-11). Edinburgh, UK, July 2002.
[14] J. P. Sousa and D. Garlan. Aura: an Architectural Framework for User Mobility in Ubiquitous Com-

puting Environments. 3rd Working IEEE/IFIP Conference on Software Architecture (WICSA-
2002), Montreal, Canada, 2002, pp. 29-43.

[15] O Tatebe et. al. The Second Trans-Pacific Grid Datafarm Testbed and Experiments for SC2003.
2004 International Symposium on Applications and the Internet, January 2004, Tokyo, Japan.

[16] S. Zachariadis et. al. XMIDDLE: Information Sharing Middleware for a Mobile Environment. ICSE
2002, Orlando, FL, May 2002.

[17] ISO/IEC, Framework for the Specification and Standardization of Data Elements, Geneva, 1999.
[18] DCMI, Dublin Core Metadata Element Set, Version 1.1: Reference Description, 1999
[19] L. McKnight, J. Howison, and S. Bradner. Wireless Grids: Distributed Resource Sharing by Mobile,

Nomadic, and Fixed Devices. IEEE Internet Computing, pp. 24-31, July/August 2004.
[20] R. N. Taylor, N. Medvidovic, et al. A Component-and-Message-Based Architectural Style for GUI

Software. IEEE Transactions on Software Engineering, Vol. 22, No. 6, pp. 390-406, June 1996.

	GLIDE: A Grid-based Light-weight Infrastructure for Data-intensive Environments
	1 Introduction
	2 Background and Related Work
	2.1 Computational Grid Technologies
	2.2 Data Grid Technologies
	2.3 Prism-MW

	3 Arriving at GLIDE
	3.1 GLIDE’s Design
	3.2 Sample Application Using GLIDE
	3.3 Evaluation

	4 Conclusions and Future Work
	5 Acknowledgements
	6 References

